УДК 004

Pаспределение точек по территориальным зонам с помощью программы Qgis и скрипта Python

Вихляев Дмитрий Романович Приамурский государственный университет имени Шолом-Алейхема Студент

Аннотация

В данной статье рассматривается создание скриптовых функций на языке Python в среде Qgis. Используются данные территорий регионов и список координат точек. В результате исследования будет написана программа, сопоставляющая территориальную принадлежность каждой точки к региону. Ключевые слова: Qgis, координаты, ГИС, Python, CSV, pandas.

Distribution of points by territorial zones using the Qgis program and the Python script

Vikhlyaev Dmitry Romanovich Sholom-Aleichem Priamursky State University Student

Abstract

This article discusses the creation of scripting functions in Python in the Qgis environment. The data of the territories of the regions and the list of coordinates of the points are used. As a result of the research, a program will be written that compares the territorial affiliation of each point to the region.

Keywords: Qgis, coordinates, GIS, Python, CSV, pandas.

1 Введение

1.1 Актуальность

Язык Python является универсальным языком программирования, который широко используется в области науки о данных и геоинформатике. Использование Python в QGIS позволяет пользователям автоматизировать И разрабатывать геоинформационные рутинные задачи сложные аналитические процессы. Это ускоряет процесс, улучшает производительность и эффективность работы. Скриптование на Python в QGIS открывает возможности для создания пользовательских плагинов и инструментов. Пользователи могут разрабатывать собственные расширения, добавляя новые функциональные возможности или адаптируя существующие инструменты под специфические потребности проекта или организации. Python обладает богатой экосистемой библиотек и модулей для обработки данных, машинного обучения, статистического анализа и визуализации. Используя эти библиотеки в скриптах QGIS, можно выполнять сложные операции анализа данных прямо в среде QGIS, без необходимости переключения между различными программами.

1.2Обзор исследований

С.Е.Боровой выявил факторы деградации почвы при помощи геоинформационных систем (Qgis) [1]. А.О.Белоусов разработал технологию формирования информационной базы о состоянии земель сельскохозяйственных организаций в геоинформационной системе А.А.Терешенко спроектировал модуль на геоинформационной среды программирования функционального И наполнения модуля [3]. Т.Ю.Котова, А.Р.Нафикова провели поиск и загрузку данных openstreetmap в Qgis [4]. А.Н.Крайников разработал модуль Qgis для нахождения кратчайшего пути [5].

1.3Цель исследования

Цель исследования — написать скрипт программы сопоставляющей каждой точке область, в которой она расположена.

2 Материалы и методы

Для реализации используется программа Qgis версии 3.36.1 co модулем встроенный интерпретатор Python специальным qgis. Территориальные границы регионов В векторном формате файлов поддерживаемых Qgis. Файл CSV со списком координат точек.

3 Результаты и обсуждения

Python в QGIS предоставляет доступ к уже встроенным модулям, которые значительно расширяют функциональные возможности программы и обеспечивают возможности для автоматизации задач и разработки пользовательских решений.

Модуль PyQGIS предоставляет Python API для работы с функциями QGIS. Он позволяет пользователям взаимодействовать с проектами, слоями данных, символикой, геообработкой и многими другими аспектами через программный интерфейс Python. PyQGIS позволяет автоматизировать задачи, создавать пользовательские плагины и интегрировать QGIS с другими системами и инструментами.

Данные точек расположены в CSV файле. Поля «LAT» и «LON» содержат координаты широты и долготы соответственно. Территориальные границы регионов загружены из файлов geojson в Qgis как векторные слои (рис.1,2).

USAF	WBAN	STATIONNAME	CTRY	LAT	LON
134910	99999	SKOPJE	RS	+42.517	+022.283
200260	99999	VIKTORIYA ISLAND	RS	+80.167	+036.750
200340	99999	NAGURSKOYE	RS	+80.817	+047.417
200460	99999	POLARGMO IM. E.T. KRENKELJA	RS	+80.617	+058.050
200470	99999	BUKHTA YURIYA	RS	+80.317	+052.800
200490	99999	TIKHAYA BAY	RS	+80.367	+052.917
200660	99999	USHAKOVA ISLAND	RS	+80.833	+079.700
200690	99999	OSTROV VIZE	RS	+79.483	+076.983
200850	99999	OSTROV PIONEER	RS	+79.883	+091.233
200870	99999	MGMS IM. G.F. USHAKOVA	RS	+79.550	+090.567
200970	99999	CAPE PESCHANIY	RS	+79.383	+102.417
201460	99999	ZALIV GULDA	RS	+79.917	+058.917
201860	99999	KRASNOFLOTSKIYE ISL	RS	+78.617	+098.700
201990	99999	MALYY TAYMIR ISLAND	RS	+78.133	+107.200
202740	99999	OSTROV UEDINENIJA	RS	+77.500	+082.200

Рис. 1. Содержание CSV файла

Рис. 2. Графический вид территорий в окне карты Qgis

В верхней панели инструментов «Модули»->«Консоль Python» находится инструмент python консоли. Внутри можно создать текстовый документ и начать писать функции (рис.3).

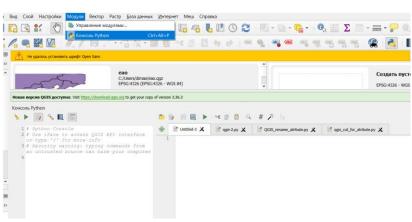


Рис. 3. Интерфейс Python консоли

Вначале нужно подключить вспомогательные модули. Pandas используется для чтения и записи данных в различных форматах (CSV,

Ехсеl, базы данных), очистки данных, их трансформации, фильтрации и статистического анализа. Модуль qgis.core используется для создания и изменения векторных слоев (точек, линий, полигонов), загрузки и сохранения проектов, выполнения пространственных запросов и доступа к метаданным, связанным с геоинформационными данными. Модуль qgis.gui применяется для задач, связанных с элементами GUI в приложениях QGIS, таких как создание картографических холстов, обработка взаимодействий пользователей с картами, настройка панелей инструментов и интеграция пользовательских виджетов в интерфейсы QGIS (рис.4).

```
import pandas as pd
from qgis.core import QgsVectorLayer, QgsProject
from qgis.gui import QgsMapCanvas
```

Рис. 4. Подключаемые модули

Первой функцией станет отображение списка доступных слоёв. Сначала использован метод QgsProject.instance(), который возвращает экземпляр текущего проекта QGIS. Вся работа с данными в QGIS обычно выполняется через активный проект, который представлен объектом project. Затем из проекта вытаскиваются слои. Метод project.mapLayers() возвращает словарь, где ключами являются идентификаторы слоев, а значениями – объекты слоев (QgsMapLayer). Этот метод позволяет получить доступ ко всем слоям, которые загружены в текущий проект QGIS (рис.5).

```
/Local/Temp/tmp3yjla2wg').read_text())
# Получение списка слоев
                                                     Имя слоя: еао2
def · get_layers():
                                                    Имя слоя: ДВФО
     # Получение активного проекта
                                                    Имя слоя: Сетка
    project = QgsProject.instance()
                                                    Имя слоя: растояние
                                                    Имя слоя: Магаданская область
                                                    Имя слоя: Сахалинская область
     # Получение списка слоев
                                                    Имя слоя: Республика Бурятия
    layers = project.mapLayers()
                                                    Имя слоя: Забайкальский край
     # Вывод - списка - слоев
                                                    Имя слоя: Амурская область
Имя слоя: Хабаровский край
    for layer id, layer in layers.items():
                                                    Имя слоя: Камчатский край
         print("Имя слоя:", layer.name())
                                                    Имя слоя: Приморский край
```

Рис. 5. Функция вывода всех доступных слоёв проекта и результат

Если в проекте имеются не нужные слои, но удалять их нельзя. В таком случае можно переделать функцию, чтобы вместо всех слоёв, брались только видимые слои. Если слой отображается на карте и в окне напротив имени стоит галочка, означает что слой видимый.

Сначала инициализируется пустой список для отображаемых слоёв. Метод iface.mapCanvas().layers() вызывается на объекте холста и возвращает список всех слоев, которые в данный момент отображаются на этом холсте. Это включает все слои, которые видны пользователю в текущем представлении карты. Через цикл проходи проверка каждого слоя на видимости и в случае истины слой добавляется в массив. В конце функция возвращает требуемый список (рис.6).

Рис. 6. Функция получения списка видимых слоёв

Далее нужно загрузить все данные в одну функцию. Для получения координат точек используется метод загрузки pandas из CSV файла. Метод getFeatures() возвращает все объекты слоя, в которые входят геометрия и атрибуты. Для каждой объекта из списка вызывается метод geometry(), который возвращает геометрию и добавляет в массив. Затем создаётся новое поле в таблице, для записей названий регионов.

В цикле происходит перебор строк в таблице. Значения таблицы преобразуются координаты Qgis, а затем в объект геометрии point, через методы QgsPointXY и QgsGeometry.fromPointXY соответственно.

Для каждого полигона проверяется, принадлежит ли созданная точка этому полигону с помощью метода point.within(). Возвращается истина, если точка принадлежит полигону. В этом случае в таблицу добавляется новая запись. В конце функция записывает обновлённую таблицу в CSV файл (рис.7,8).

```
def distribution_point_by_layer(path_in,path_out,new_field,lon_field,lat_field):
       Загрузка · таблицы · panda
     df = pd.read_csv(path_in)
     area_layers = get_visible_layers()
     # Получение геометрии из фич слоя
     area_geometry -=[]
     \texttt{for} \cdot \texttt{i} \cdot \texttt{in} \cdot \texttt{area\_layers:}
         area features = i.getFeatures()
         area geometry.append([feature.geometry() for feature in area features])
     df[new_field] = None
     # \cdotПеребор \cdot точек \cdot из \cdot таблицы \cdot pandas \cdot и \cdot определение \cdot их \cdot принадлежности \cdot полигону for \cdot index, \cdot row \cdot in \cdot df. iterrows ():
         point = QgsGeometry.fromPointXY(QgsPointXY(row[lon field], row[lat field]))
          for i in range(len(area_geometry)):
              for geom in area_geometry[i]:
    if point.within(geom):
                          df.at[index, new_field] = area_layers[i].name()
                         break
       Сохранение измененной таблицы pandas
     df.to_csv(path_out, index=False)
```

Рис. 7. Функция распределения точек по регионам

USAF	WBAN	STATIONNAME A	CTRY	LAT	LON	AREA
217280	99999	BYKOVSKI	RS	71.933	129.083	Республика Саха (Якутия)
313970	99999	BYSSA	RS	52.45	130.867	Амурская область
360870	99999	CADAN	RS	51.283	91.667	
320360	99999	CAJVO	RS	52.367	143.183	Сахалинская область
309150	99999	CAKIR	RS	50.417	103.617	Республика Бурятия
324090	99999	CAPE AFRIKA	RS	56.167	163.317	Камчатский край
230240	99999	CAPE BELY	RS	69.483	60.333	
221450	99999	CAPE CHERNIY	RS	68.367	38.65	
231460	99999	CAPE KAMENNYJ	RS	68.5	73.583	
206960	99999	CAPE KASISTY	RS	73.667	109.75	
208560	99999	CAPE KHARASOV	RS	71.4	67.633	
250770	99999	CAPE KJANGTOK	RS	69.217	179.367	Чукотский автономный округ
321490	99999	CAPE KRYLJON	RS	45.9	142.083	Сахалинская область
217390	99999	CAPE KURTAKH	RS	72.167	139.5	Республика Саха (Якутия)
209430	99999	CAPE MENSHIKO	RS	70.717	57.617	
207560	99999	CAPE PAYNOTE	RS	72.65	68.983	
200970	99999	CAPE PESCHANIY	RS	79.383	102.417	
325860	99999	CAPE POVOROT	RS	52.367	158.567	Камчатский край
325590	99999	CAPE SHIPUNSKIY	RS	53.1	160.033	Камчатский край
217330	99999	CAPE SVATOJ	RS	72.75	140.75	Республика Саха (Якутия)
315790	99999	CAPE SYURKUM	RS	50.1	140.683	Хабаровский край
216110	99999	CAPE TERPAY-T	RS	73.567	118.75	Республика Саха (Якутия)
311730	99999	CAPE UKOY	RS	55.65	136.75	Хабаровский край
322170	99999	CAPE VASILEVA	RS	50.0	155.383	Сахалинская область
320120	99999	CAPE YELIZAVETI	RS	54.417	142.717	Сахалинская область
251500	00000	CALINICIZA IA DAV	DC.	C0 0	170 007	11

Рис. 8. Новый CSV файл

В результате исследования был создана программа, которая эффективно определяет принадлежность точек полигонам с использованием пространственных запросов. Описано использование QGIS для работы с геометрическими данными и pandas для работы с табличными данными. Каждая точка проверяется на принадлежность каждому из полигонов, что позволяет установить соответствующие атрибуты в DataFrame на основе географического расположения точек.

Библиографический список

- 1. Боровой С.Е. Выявление факторов деградации почвы при помощи геоинформационных инструментов систем (Qgis) сборнике: В Инновационные технологии в агропромышленном комплексе в условиях трансформации. материалы Международной цифровой научноконференции, практической 80-летию победы посвященной Сталинградской битве. Волгоград, 2023. С. 3-8.
- 2. Белоусов А.О. Технология формирования информационной базы о состоянии земель сельскохозяйственных организаций в геоинформационной системе Qgis // В сборнике: Рациональное использование земельных ресурсов в условиях современного развития АПК. Сборник материалов Всероссийской (национальной) научнопрактической конференции. Тюмень, 2021. С. 15-21.
- 3. Терешенко А.А. Проектирование модуля на основе геоинформационной среды и программирование функционального наполнения модуля // В сборнике: Актуальные вопросы современной науки и образования. сборник статей XVI Международной научно-практической конференции: в 2 ч.. Пенза, 2022. С. 11-14.

- 4. Котова Т.Ю., Нафикова А.Р. Поиск и загрузка данных openstreetmap в Qgis // Аллея науки. 2019. Т. 3. № 1 (28). С. 559-562.
- 5. Крайников А.Н. Разработка модуля Qgis для нахождения кратчайшего пути // Студенческий. 2024. № 4-1 (258). С. 45-47.
- 6. Полицинский Н.С., Кузнецов И.С., Паниди Е.А. Автоматизация выделения границ медицинских участков на примере Санкт-Петербурга // ИнтерКарто. ИнтерГИС. 2023. Т. 29. № 2. С. 29-43.
- 7. Желтова Д.В. Привязка растровой карты в программе "Qgis" // Вестник науки. 2022. Т. 2. № 7 (52). С. 144-146.
- 8. Серебренников И.В. Построение архитектуры программного комплекса на основе Qgis // В сборнике: Наука, знания, интеллект. Сборник статей III Международного научно-исследовательского конкурса. Пенза, 2023. С. 47-50.